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The present study examines the motion of a slender body in the presence of a plane 
fluid-fluid interface with an arbitrary viscosity ratio. The fluids are assumed to be 
at rest at infinity, and the particle is assumed to have an arbitrary orientation relative 
to the interface. The method of analysis is slender-body theory for Stokes flow using 
the fundamental solutions for singularities (i.e. Stokeslets and potential doublets) 
near a flat interface. We consider translation and rotation, each in three mutually 
orthogonal directions, thus determining the components of the hydrodynamic 
resistance tensors which relate the total hydrodynamic force and torque on the 
particle to its translational and angular velocities for a completely arbitrary 
translational and angular motion. To illustrate the application of these basic results, 
we calculate trajectories for a freely rotating particle under the action of an applied 
force either normal or parallel to a flat interface, which are relevant to particle 
sedimentation near a flat interface or to the processes of particle capture via drop 
or bubble flotation. 

1. Introduction 
When a small particle moves in the vicinity of a boundary, its motion will be 

affected owing to hydrodynamic wall effects. We have previously considered the 
motion of a spherical particle in creeping motion near a fluid-fluid interface (Lee, 
Chadwick & Leal 1979; Lee & Leal 1980, 1982; Berdan & Leal 1982). The present 
paper is the first of a series in which we extend this work to consider the creeping 
motion of slender rod-like bodies in the same circumstances. A number of different 
problems are of potential interest, corresponding to various types of application. For 
example, the translation and rotation of a fibre-like particle in a quiescent fluid system 
is relevant to sedimentation phenomena, and to theories of Brownian motion for 
particles near a fluid-fluid interface. Particle motions in more general flow fields such 
as pure straining flow or simple shear flow are relevant in suspension mechanics, and 
to some aspects of the process of particle capture at the surface of a large bubble or 
drop (cf. Goren & O’Neill 1971). 

In this present work, we use the fundamental solutions of Lee et al. (1979) in 
combination with slender-body theory for Stokes flow (cf. Batchelor 1970; Cox 1970, 
1971; Johnson & Wu 1979; Keller & Rubinow 1976; Johnson 1980; among others) 
to study the translation and rotation of an arbitrarily oriented, straight slender body 
through a quiescent fluid near a$at fluid-fluid interface. The resulting solutions are 
valid, as a zeroth-order approximation, under any conditions where the interface 
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deformation remains small (Lee et al. 1979). On physical grounds, this occurs when 
either the separation distance between the particle and the interface is much larger 
than the characteristic length of the particle, or when either the surface tension or 
the density difference between the two fluids is very large. 

Recently, Fulford & Blake (1983) have considered the same general problem 
considered here, but only for translation with the body oriented either parallel or 
normal to the interface. Fulford & Blake’s analysis yields the hydrodynamic force 
for these two particular orientations, as well as the induced torque due to the 
interface, but cannot be used to calculate the instantaneous angular velocity of the 
particle (as claimed by Fulford & Blake) without solving for particle rotation in a 
quiescent fluid to determine the relationship between torque and angular velocity in 
the presence of the interface. Furthermore, the Fulford & Blake solutions cannot 
describe the motion of an arbitrarily oriented body, and thus cannot, for example, 
provide trajectories for particle motion under the action of a force if the particle is 
free to rotate. 

In the present paper we consider translation and rotation, each in three mutually 
orthogonal directions. The solutions of these six fundamental problems, each with 
an arbitrary orientation of the particle, provide all of the components of the 
hydrodynamic resistance tensors which relate the hydrodynamic force and torque on 
the particle to its translational and angular velocities, for arbitrary particle motions 
in a quiescent fluid. These fundamental solutions are then applied, for illustrative 
purposes, t o  calculate particle trajectories for ‘ sedimentation ’ of a freely rotating 
particle due to an applied force which acts either normal or parallel to a flat interface. 

2. Basic equations 
We begin by considering the governing differential equations and boundary 

conditions for a rigid, non-axisymmetric, straight slender body which moves, with 
translational velocity U and angular velocity D near an interface which separates 
two immiscible Newtonian fluids. The fluids will be denoted as I and 11, with the body 
wholly immersed in the fluid 11. It is assumed that the relevant Reynolds number 

u1 ( 5 2 1 2 )  
R e = -  or- 

v.2 \ v 2  1 
is sufficiently small (Re 3 1 )  that the quasi-steady creeping-motion approximation 
is applicable, where v p  represents the kinematic viscosity of the fluid I1 and 1 is the 
half-length of the body. As the body moves it induces a disturbance motion in the 
two fluids, and in slender-body theory the associated flow field at low Reynolds 
number is investigated by examining a nearly equivalent problem in which the body 
is replaced by a line distribution of Stokeslets along the axis of the body. A slender 
body with an arbitrary orientation is depicted in figure 1. We adopt a coordinate 
system in which the x1 axis coincides with the projection of the body centreline onto 
the interface, which is itself located at x3 = 0. Stokeslets are distributed over the 
portion - 1  < x < 1 of the body axis, with the magnitude of the point force at any 
position x, on this line denoted as 

fs(x,) = 87cP2 a(x,) W-XX,) ,  

in which 6(x) is the three-dimensional Dirac delta function. The vector density (or 
weighting) function a@,) must be chosen as a function of position along the particle 
axis so that the no-slip boundary condition 

u2 = u+nxx, (1) 
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-b 

Perimeter = 2 ~ ~ 7 0  (x) 

FIQURE 1. Description of the coordinate system and orientation of a slender body. 

is satisfied on the body surface. In component form, the position vector x, is simply 
represented as x, = (gcosO,O,[sinO-d), 

in which 0 is the angle between the centreline of the body and the plane of the 
interface, d is the separation distance between the interface and the body centre, and 
5 is the distance along the centreline measured from the centre of the body. 

The fundamental solution of the creeping-motion equations for a point force 
located at an arbitrary point x, in fluid I1 was obtained independently by Aderogba 
& Blake (1978) and by Lee et al. (1979). The resulting velocity and pressure fields 
can be expressed in the form 

$x,x,; a) = a(x , ) -Y (x ,  x,) 
p ( x ,  x,; a)  = a(x , ) .n (x ,  x,). 

P a )  
(2b) 

Here Y(x, x,) and D(x,  x,) denote Cartesian tensorial Green functions with 
components 

(summation convention over I = 1 , 2  and k = 1,2 ,3) ,  
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where r = x-x,, R = x-x:, r = Irl, R = IRI, h = ,u1/,u2, and x,* denotes the reflec- 
tion point of x, in the fluid I. Thus, for a line distribution of Stokeslets with the line 
density a@,) the resulting fluid velocity u(x )  and pressure p ( x )  at a point x in the 

The velocity and pressure fields defined by these equations automatically satisfy 
the conditions of zero normal velocity, continuity of tangential velocity and 
continuity of the shear stress at  the fluid-fluid interface, as well as the condition of 
vanishing velocity in the far field (note that the Green functions Y(x ,  x,) and H(x, x,) 
are O ( l / r )  and O ( l / r 2 )  for r 9 1).  All that remains is to satisfy the no-slip boundary 
condition ( I ) ,  according to which the fluid velocity must be U+B x X, a t  the body 
surface. Thus, the unknown function a(x,) representing the line density of Stokeslet 
strengths must be determined so that the disturbance velocity given by (3a)  is at  
least approximately equal to U+B x x, at all points of the body surface. It should 
be noted that, in general, a line distribution of Stokeslets alone will not be sufficient 
to satisfy the no-slip boundary condition at all levels of approximation for all points 
on a body surface. Higher-order singularities (e.g. potential dipoles) are also generally 
needed, even in the case of an axisymmetric body. However, when the body is slender, 
the boundary condition a t  the body surface can always be satisfied to an order of 
approximation, O(s) ,  where s = [In (2Z/R0)]-l, without explicit introduction of the 
higher-order singularities. Furthermore, the total hydrodynamic force or torque 
acting on the body can be determined from the Stokeslet distribution alone as pointed 
out previously by Batchelor (1970). 

A point on the body surface can be expressed in terms of cylindrical polar 
coordinates ( r ,  7, z). It is assumed that the cross-section of the body has an effective 
radius yo(%)  which is a function of distance x along the body centreline. The maximum 
value of ro(x) is denoted as R,. The cross-sectional shape need not be circular, provided 
only that we choose ro ( z )  such that the perimeter is equal to 2nr,(x) (Batchelor 1970). 
A t  the body surface, 

x = xB = (xcos0-rOsinpsin0, r,cosq, zs in0-d+rosin~cos8) .  

Applying the no-slip boundary condition at  the body surface to (3a)  yields a 
Fredholm integral equation of the first kind for the unknown Stokeslet distribution 
a@,), i.e. 

U +  52 x x, = 1, a(x,).Y(x,, x,) dC. (4) 

The theoretical analysis that follows will be based on the assumption that both 
Roll and R,/(d - 1 sin 0 )  ( > R,/d) are small. The first assumption is a slenderness 
criterion, while the second implies that the slender body is not closer than a few radii 
from the interface. In view of the linearity of the problem, the translational and 
rotational components of the particle motion can be considered separately, and we 
begin with translational motions of an arbitrarily oriented body parallel and 
perpendicular to the interface. 
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3. Fundamental solutions for translation of a slender body near a flat fluid 
interface 

3.1. Motion parallel to the interface along the x1 axis 

Let us then consider an arbitrarily oriented slender body which is moving with a 
translational velocity Ulel in the direction of the x1 axis through fluid 11. In  this 
case, in order to satisfy the no-slip boundary conditions, it  is necessary to employ 
distributions of Stokeslets oriented in both the el and e3 directions. By substituting 

a(x,) = (al(c), O ,  0 1 3 ( < ) ) 7  u(xB) = (ul, O ,  O )  
into (4) we obtain three simultaneous Fredholm integral equations of the form 

1 

c'i = [a,(<) ' yij(xB3 <)I d< 

( i  = 1,2,3, summation convention over j = 1,2,3) (5 )  

These integral equations cannot be solved exactly (except by numerical methods), 
but can be solved approximately by means of an asymptotic expansion for small Roll 
and R,/d. After much algebra, expanding ( 5 )  to O(R& Ro/d), we obtain 

(xl component) 

1 Ul = al(x) 2 -+S(x) (cos2 8+ 1)-2 cos2 8 + 2  sin2 7 sin28+&(x; A, 8, d) [ ( t :  ) 
1 -sin2q sin2 28+&(x; A,  8, d )  

( x 2  component) 

( x 3  component) 

1 -sin27sin28+R(x;A,8,d) 

1 (1  + sin2 69-2 sin2 7 cos2 8-2 sin2 8+ W ( x ;  A, 8, d) 

E 

+[-z [aj(!3-aj(x)1 y3j(xB,5)d5+0e>$), (6c)  

where 

(See Appendix for specific formulae for P ( z ;  A, 8, d ) ,  &(z; A,  8, d), R(x; A,  8, d )  and 
W(x;h ,B,d) . t )  The primary small quantity ~ ( 4  1 )  which will be used in the 

~ subsequent analysis represents a slenderness parameter, and S(x)  is a shape function 
of the body (specified once ro(x)  is given). 

t The Appendix is not reproduced here. A copy may be obtained on request from either the 
authors or the Editor of the Journal. 
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I n  an analysis of the similar integral equations for the infinite-fluid case, Tuck 
(1964), Tillet (1970) and Batchelor (1970) suggested an expansion of a(z)  in powers 

(7) of c ,  

as a straightforward way to  obtain an approximate solution of the integral equations 
(6a-c) for the unknown function a(.). It may be worth pointing out that  solving the 
integral equation ( 5 )  using an expansion such as (7 )  in powers of c requires retention 
of an infinite number of terms to  ensure that the associated error is no larger than 
the error O(Ro/ l )  that  is inherent in (6a-c). I n  fact, we determine the first two terms 
in the expansion (7)  satisfying the boundary condition ( 1 )  up to O(c2) ,  following in 
the spirit of Batchelor (1970), Cox (1970) and others who adopted the same level of 
approximation to calculate such parameters as the hydrodynamic force and torque 
for slender-body motion in an unbounded fluid. 

The sin27 terms (O(c2) )  which appear in (6a , c )  are indicative of the fact that 
higher-order singularities are necessary if the boundary conditions are to be satisfied 
a t  O(c2) .  Obviously, with the no-slip condition (cf. ( 5 ) )  the fluid velocity a t  the body 
surface is required to be independent of 7. To remove the 7-dependence associated 
with the Stokeslet distribution, a line distribution of potential dipoles must be 
superposed on the line distribution of Stokeslets a t  O(e2) .  The fundamental solution 
for a potential dipole located near a plane interface has been obtained by Lee et al. 
(1979). The required line distribution of potential dipoles can be shown to be related 
to  a(.) by the relationship 

It remains only to determine the distribution function a(x). 
After adding the fundamental solution for a line distribution of potential dipoles 

with line density given by (8) to the Stokeslet solution in the form (6), and utilizing 
the expansion (7 ) ,  we find immediately that 

q x )  = +(x) + e2aj(x) + c3a3x)  + . . . , 

I(.) = - t [ r 3 4  4x11. (8) 

+ A ( ~ ;  A ,  8, d )  + 0 ( € 3 ) ,  I1 3 sin2 8- 1 
[e-;[2S(x)+ 1 + sin2 8 

(sin2 8 + 1 )  Ul 
4 %(X) = 

sin28 '' [c-f [2S(z) + 3+E(x;  A ,  8, d)] +O(c3) .  a3(x) = - 
8 1 

Specific formulae for A ( x ;  A,  8, d )  and E ( x ;  A, 8, d) are given in the Appendix. Russel 
et a.1. (1977) have carried out an analysis of the interaction between a cylindrical 
slender body and a single rigid plane wall. The leading-order terms in (9a, b)  for h -too 
are identical with their asymptotic solutions since the interface (or rigid-wall) effects 
are of order c2. 

It may be noted that the shape function S(x)  becomes singular a t  the ends of the 
body for all but ellipsoidal shapes where S(x)  = 0, and the solution for the Stokeslet 
distribution (i.e. (9a, b ) )  is not valid a t  the body ends. However, i t  can be shown that 
the singular behaviour of S(x )  makes no contribution to the total hydrodynamic force 

and torque exerted on the slender body (since lim (xn.lnx)+Ofor any positive 
x+o+ 

integer n), and we make no attempt to improve on the solution near the ends of the 
body, though methods to  do so have been known for some time (Tuck 1964). 

The total hydrodynamic force F associated with translation in the el direction can 
be calculated simply by integrating the line density of the Stokeslet distribution a(x) 
with respect to x from -1 to 1,  

rl 
F = - 8np2 J a(x) dr. 

-1 
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The hydrodynamic torque T with respect to the centre of the body can also be 
obtained from the Stokeslet distribution, and is equal to 

T = - Snp, I, xo x a(x) dx. 

For a circular cylindrical slender body ( r o ( x )  = Ro),  the shape function is 
S(x )  = i l n  [ l -  ( ~ / 1 ) ~ ] ,  and the total hydrodynamic force and torque can be obtained 
by direct integration of (10) and (11). The results are 

+ 1 S A (X ; A,  8, d )  dx)] 
3 sin2 8- 1 
2(1 +sin28) 41 -1 

Fl =-4np2UlZ(sin28+1)e 

T, = 2np2 G , s i n H ~ ~ ~ ~  xH(x;A,8,d)dx+O(s3), (13) 
-1 

where H ( x ;  A, 8, d )  is defined by 

H ( x  ; A, 8, d )  = g( 1 + sin2 8) A ( x ;  A,  8, d )  + 4 cos2 8 E(x ; A ,  8, d ) .  

For an ellipsoidal body, for which the shape function is S(x )  = 0, the total hydrody- 
namic force can also be obtained by substituting j L l  S ( x )  dx = 0 in place of 21(ln 2 - 1) 
in (12a, b) .  However, the hydrodynamic torque remains the same since jLl  xS(x)dx 
vanishes for all even functions of S(x) .  

When the slender body is oriented perpendicular to the interface (19 = go"), (6a ,  c )  
must be modified since sec 8 is singular. In  this case, the resulting expression for the 
total force and induced torque on a circular cylindrical slender body (i.e. the force 
and torque corresponding to the translational motion U,  el) is 

Fl = -8np2UlZ s -s2  ln2--+- a(x;A,d)dx + O ( s 3 ) ,  [ ( 2 41 ' S  - E  11 
xa(x;A,d)dx+O(e3), 

where, again, the function a ( z ;  A, d )  is given in the Appendix. The special cases 8 = 0" 
or 90" were considered by Fulford & Blake (1983), and the present results (12a), (13), 
(14) and (15) for 8 = 0" and 90" reduce precisely to their results for Fl and T, through 
terms O(s3) .  The instantaneous angular velocities calculated by Fulford & Blake are 
wrong, however. Although the analysis above yields T, as a function of U,,  the 
relationship between T, and Q2 must still be determined, and this was not done by 
Fulford & Blake (1983), who instead used the relationship for rotation in an 
unbounded fluid. 

The effects of hydrodynamic interaction between the particle and the interface are 
contained in the complicated functions A ( x ;  A,  8, d ) ,  E ( x ;  A,  8, d ) ,  H ( x ;  A,  8, d )  and 
a ( x ; A , d )  of (12)-(15). Thus, in order to illustrate the qualitative nature of these 
effects, the force components Fl and F3, and the torque T, are plotted in figures 2, 
4 and 5 as functions of the orientation angle 0 for s = 0.1887 (which corresponds to 
Ro/Z = 0.01), and two values of particle position, d / l  = 1.01 and 2. For each value 
of d/Z, we include three values of the viscosity ratio, A = 0, 1 and 03. Also shown in 
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-1 32 

12 
O0 30" 60" 90" 120" 1.50" 

Orientation angle, B 

10" 

FIGURE 2. Dimensionless drag force Fl/p2 Ul Is M a function of the orientation angle 8 for translation 
of a slender body; with U = U,e,,e = 0.1887,S(r) = i ln ( 1  -(z/Qa): unbounded-fluid 
case; - - - - - ,  d / l  = 1.01; -, d / l  = 2. 

1.8 

, 0.6 
0 

Separation distance, d/l  

FIQURE 3. Ratio of the drag Fl relative to the drag in an infinite fluid as a function of the 
dimensionless distance d / l  between the body centre and the interface; U = U,e,,e = 0.1887, 
S(r)  = gln (1 - (r/Z)2) : -----, 0 = 00; -, 8 = 450; ___--,  = goo. 
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8 I 

-12 ; O0 30" 60" 90' 120" 150" 
80° 

Orientation angle, 0 

FIGURE 4. Dimensionless normal force F3/p2 u,k as a function of the orientation angle 0 for 
translation of a slender body; U = U ,  el, E = 0.1887, S(z) = ;In (1 - ( ~ / l ) ~ ) :  -----, unbounded- 
fluid case; -----,  d / l  = 1.01; -, d / l  = 2. 

-11 . '  

1 

90" 120' 1.50' 1 
-6- 

O0 30" 60' 

Orientation angle, 0 

30° 

FIGURE 5.  Dimensionless torque !l!Jp2 U ,  12e2 (or force F1/p252,l2e2) as a function of the orientation 
angle 0 for translation (or rotation) of a slender body; U = Ulel (or a = Q,e,), E = 0.1887, 
S(z) = gln (1 - (z/1)2) : - - - - -, d / l  = 1.01 ; -, d / l  = 2;  -----, unbounded-fluid case. 
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each case is the corresponding result for motion in an unbounded fluid. The qualitative 
dependence of the drag force Fl on the orientation angle 8 is unchanged from the 
unbounded case by hydrodynamic interactions with the interface. However, owing 
to the presence of the interface, the magnitude of Fl is either increased or decreased 
for any arbitrary 8, depending upon the viscosity ratio A, and this effect is a strong 
function of the particle position relative to the interface. In  particular, the ratio of 
the drag force Fl to the drag in an infinite fluid for 8 = Oo, 45' and 90°, and E = 0.1887, 
is seen in figure 3 to become a stronger function of h as d / l  decreases, except for the 
case of 8 = Oo and h = 1 .  The existence of a critical value of h separating cases in 
which the drag is either increased or decreased due to the presence of the interface 
was noted for the special cases 8 = 0' and 90° by Fulford & Blake (1983), and is also 
similar to the results obtained by Lee et al. (1979) for translation of a sphere parallel 
to a flat fluid interface. The magnitude of the effect of the interface on particle drag 
is, however, considerably larger for a sphere of radius a ,  with its centre at  a distance 
d / a  from the interface than for a cylindrical slender body of length 21 with its centre 
an equal distance d / l  (= d / a )  away. 

The general features of the force component F3 normal to the direction of motion, 
as a function of 8, are again quite similar to those for the case of the same particle 
moving in an unbounded fluid. The fact that F3 is non-zero means that a motion in 
the '1'-direction cannot be sustained (say by a force in the l-direction) without 
simultaneous application of a force - F3 to the particle by some external means. In 
the absence of an applied force, -Fa, a positive force on the body in the ' 1 '-direction 
will yield a component of motion toward the interface for Oo < B < 90° (see figure 
1 )  or away from the interface for 90' < 0 < 180O. The normal force F3 is increased 
in magnitude for all h by the presence of the interface. It may also be noted that 
the fractional increase in the hydrodynamic force for a given d / l  and h is much larger 
for F3 than for Fl. Thus, the normal force associated with translation at an oblique 
angle to the symmetry axis is more sensitive to the presence of the interface than 
the drag. 

The induced hydrodynamic torque T,, given by (13) and (15), is due solely to the 
presence of the interface (i.e. T,+O as d/l+co). It is evident, since T, =k 0, that a 
slender body cannot sustain a translational motion U = Ul el without simultaneously 
rotating unless a torque -T, is applied to the body by some external means. Thus, 
a freely suspended slender body (i.e. one with T = 0) will rotate with a sense (i.e. + 
or - )  which depends on A and on the orientation and position of the body relative 
to the interface (i.e. 8 and d) .  This rotation can be viewed as a consequence of the 
gradient in the induced Stokeslet strength along the body axis due to the presence 
of the interface, and is also characteristic of spheres and rigid bodies of other shapes. 

The translation of a rigid sphere parallel to a flat interface was analysed in detail 
by Lee & Leal (1980). In  that case, the sense of rotation was determined, for a given 
dla,  solely by the viscosity ratio A. Here it can be seen from figure 5 that the 
orientation angle plays a critical role, in addition to A and d l l ,  in determining the 
direction of rotation. Indeed, for h = 1 and co, rotation in either direction is possible 
depending on 8. The angle between 90' and 180° (or between -90° and Oo) where 
T, = 0 represents a stable equilibrium orientation for each particular value of d / l  that 
is illustrated in figure 5.  It should be noted, however, that d / l  will increase with time 
for 90' < 8 < 180° unless a force is applied to the particle in the direction normal 
to the interface. For h = 0, on the other hand, a slender body with its centre at  
d / l  = 1.01 or 2 will rotate in the clockwise direction for all 8 so that its leading edge 
turns away from the interface. In figure 6 the induced torque is plotted versus the 
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distance between the body centre and the interface for 0 = Oo, 45O and 90°, and h = 0, 
1 and co. It can be noted that the magnitude of the torque increases rapidly as d l l  
decreases for 8 = 45O and 90°, whereas there exists a critical relative distance d l t  at 
which the magnitude of the torque has a maximum value for 8 = 0'. Although it is 
tempting to conclude from figure 6 that the direction of induced rotation is 
independent of d l l  (thus depending only on the viscosity ratio h and the orientation 
angle e), it is dangerous to draw such general conclusions from calculated results for 
only three values of h and three values of 8. Indeed, in the case of a rigid sphere near 
an interface, Lee & Leal ,( 1980) carried out a more detailed examination of the sense 
of the induced torque and showed, in that case, that there exists a critical distance 
beyond which the direction of rotation changes for any h in the range 6 < h < 00. 

This change in direction with d would not have been evident at all for h = 0, 1 or 
00, the three values considered in figure 6. 

3.2. Motion parallel to the interface along the x2 axis 

Let us now turn to the case of a slender body of arbitrary orientation translating 
parallel to an infinite plane interface along the x2 axis. In this case, the no-slip 
boundary condition on the body surface is u(xB)  = U2e2.  By the same approach 
outlined in 53.1, we have developed a relationship between the velocity U2e2 of the 
body and the point-force density a2(x) : 

1 

+ [a2(6)-a2(x)] Y2,(xB,6)d6 1 I, 
+0(+,2). (16) 

FIQURE 6. Dimensionless torque ~ / p z U l 1 2 e 2  (or force F,/p,0212e2) as a function of the 
dimensionless distance d / l  between the body centre and the interface; U =  Ulel (or 
f2 = Q2e,),e = 0.1887,S(s) = ~ 1 n ( l - ( s / l ) 2 ) :  -----, 0 = 0'; -, 6 = 45'; -----,  8 = 90'. 
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_ _ _ _ _ _ _ _ _ _ - - - - - - -  

24 7 I 
22 --.:"1 

- _ _ -  

20 
90' 120" 1.50" 180" 0" 30" 60' 

Orientation angle, 0 
FIQURE 7. Dimensionless drag force F2/p2 U,  16 as a function of the orientation angle 0 for translation 
of a slender body; U =  U,e , ,e  = 0.1887,S(z) = i ln(l-(x/l)'):  ----- , unbounded-fluid case ; 
_ _ _ _ _  , d / l  = 1.01 ; -, d / l  = 2. 

In order to remove the 7-dependence of the fluid velocity associated with the 
Stokeslet distribution a t  O(e2) ,  we again need an additional line distribution of 
potential dipoles with a density /?,(x) = -+$(x) or2(x). Then an asymptotic expansion 
of (16) together with the potential dipole distribution results in the following 
expression for a 2 ( x )  : 

(17) CC,(X) = 4 U 2 [ ~ - 9 ' ( 2 X ( ~ ) +  1 +B(x;A,  O,d))]+0(e3). 

The hydrodynamic force and torque exerted on a circular cylindrical slender body 
are thus 

F, = -8xp2 U,ls (18) 

TI = -2xp2 u,sinOeZJ' xB(x;A,0,d)dx+0(e3), (19a) 
-1 

1 

= 2xp2 u,cosOe2 xB(x; A,  0 ,  d) dx+ 0 ( e 3 ) .  I, 
The force and induced torque for the special case of a body oriented perpendicular 
to the interface must be calculated separately, but i t  is obvious from symmetry 
considerations that the results are exactly those already given by (14) and (15) (i.e. 
Fa = PI of (14), TI = -T, of (15) and T3 = 0). 

The results (18) and (19) are plotted in figures 7-9 for the same set of parameters 
as in 83.1. In many respects, the results are similar to those already described for 
parallel motion along the x1 axis. There is again a critical viscosity ratio A above or 
below which the drag in the presence of an interface is either increased or decreased 
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FIGURE 8. Dimensionless torque !l'Jp2 U212c2 (or force F2/p2Q, W) as a function of the 
orientation angle 6 for translation (or rotation) of a slender body; U =  U2e,  (or 
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a function of the FIGURE 9. Dimensionless torque T3/p2 U ,  lacz (or force F2/pz Q3 1W) as 
orientation angle 8 for translation (or rotation) of a slender body; U = U,ez (or 
Q=Q,e3),e=0.1887,S(z) = t l r ~ ( l - ( z / l ) ~ ) :  ----- , unbounded-fluid case ; - - - - -, d / l  = 1.01 ; 
-? d / l  = 2. 
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relative to that in an unbounded flow for all d l l .  Furthermore, there is an induced 
torque due to the interactions between the particle and interface, which will cause 
the particle to rotate in the absence of externally applied couples - Tl and - T3. It 
may be noted that the sensitivity of drag to the orientation angle is very weak. In 
the particular case of A = 1, the drag force is, in fact, nearly constant irrespective 
of8. Although the drag force F, must be independent of 8 in an unboundedjuid, this 
would certainly not be expected in the presence of the interface. Figure 8 shows that, 
for a given A ,  the x1 component of the angular velocity due to the induced torque 
TI will always have the same sign regardless of 8. On the other hand, the induced 
torque T3 always changes sign at the orientation angles 8 = 0' (or 180') and 90° 
independent of the viscosity ratio A and dll  as shown in figure 9. 

The implication of these somewhat complicated results for the trajectories of a 
slender particle moving under the action of a force in the x2 (or x l )  direction will be 
considered later in the paper. 

3.3. Motion normal to the interface along the x3 axis 
Finally, let us turn to the problem of a slender body that is translating normal to 
a plane fluid-fluid interface. The no-slip boundary condition on the body surface is 
u(xB) = U3e3.  As before, this condition cannot be satisfied by a line distribution of 
Stokeslets alone, since the corresponding integral equations contain an 7-dependence 
at O(e2) ,  and a line distribution of potential dipoles is again required with a strength 

B(x) = -$rt(x) a (x ) .  

The corresponding Stokeslet distribution is given by 

al(z) = - t sin 28 U3[€ - $e2(2S(x) + 3 + D ( x  ; A ,  8 ,  d ) ) ]  + 0(c3),  

+ C(z; A ,  8, d )  + 0 ( € 3 ) .  11 3 cos2e- 1 u3 €-- 2S(x)+ 
1+c0s2e 4 [ ;( cos2e+i 

a3 = 

(20b)  

For the perpendicular orientation, u l (x )  = 0 and a3(x)  can be obtained simply by 
substituting 8 = 90' and b(x ;  A ,  d )  for C ( X ;  A ,  8, d )  into (20b) (b (x ;  A ,  d ) ,  C ( X ;  A ,  8, d )  
and D ( x ;  A ,  8, d )  are given in the Appendix). 

The total force and hydrodynamic torque acting on a circular cylindrical slender 
body which translates with velocity U = U3 e3 are 

Fl = 2zp, U31sin28e D(z;A,e,d)dz +O(e3) ,  11 
+ [ C(x  ; A,  8, d )  dz)] 

3c0s2e-i 
2(c0s2e+ 1 )  41 -, F3 = - 4 ~ p ~ U ~ 1 ( ~ 0 ~ ~ 8 + 1 ) €  

+ 0 (c3), (21 b )  

(22) 
1 

T, = - 2zp2 U3 cos Be2 x J ( x ;  A,  8, d )  dx+ 0(c3). J-, 
These results for Fl, F3 and T, are plotted in figures 1@12 as a function of the 

orientation angle 8 for the same set of parameters used in the preceding two cases. 
The drag force F3 in the direction of motion and the force Fl normal to the direction 
of motion, both depend on 8 in the same qualitative way as for motion of the same 
particle in an unbounded fluid. The drag force is increased relative to the unbounded 
case, even for A = 0, and this effect is enhanced strongly as the body moves closer 
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FIQURE 10. Dimensionless drag force FJp2 U31e as a function of the orientation angle 6' for 
translationofaslenderbody; U = U,e,,e = 0.1887,5(~) = tln(l-(r/l)2):----- ~ unbounded- 
fluid case; - - - - - ,  d / l  = 1.01; -, d / l =  2 .  
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FIGURE 11.  Dimensionless normal force F,/y2 U,ls as a function of the orientation angle 6' for 
translationofaslenderbody; U =  U,e,,s = 0.1887,S(z) = ~ l n ( l - ( ~ / l ) ~ ) : - - - - -  , unbounded- 
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FIQURE 12. Dimensionless torque T2/,u2 U,  laca (or force F3/,u2 O2 12c2) as a function of the orientation 
angle B for translation (or rotation) of a slender body; U = Use,  (or B = O , ~ , ) , E  = 0.1887, 
S(x) = In (1  - ( x / l ) 2 )  : - - - -, d / l  = 1.01 : -, d / l  = 2 ; unbounded-fluid case. 

to the interface. The force normal to the direction of motion is also increased in 
absolute magnitude with increases of A or decrease of d l l .  It will be noted that Fl 
changes sign at 6 = 0 and 90°. Thus, for Oo < 6 < 90°, motion toward the interface 
will induce translation in the positive ' 1 '-direction in the absence of an applied force 
-Fl ,  while the induced translation will be in the negative l-direction for 
90° < 6 < 1 8 0 O .  Finally, the hydrodynamic torque T2 induced by the presence of the 
interface means that a freely suspended slender body (one with T = 0 )  cannot 
translate towards the interface without simultaneously rotating unless the body is 
oriented parallel or perpendicular to the interface. The former orientation (6 = 0') 
is a stable equilibrium point for all A and d l l  while the latter (6 = 90°) is unstable. 
Thus, a slender body with an arbitrary initial oblique angle (6 =I= 90°) relative to an 
inte&ce tends to rotate, in the absence of an applied torque -T, to a parallel 
orientation as the body translates towards the interface for all A. 

This completes our detailed study of fundamental solutions of Stokes' equations 
for translational motion of an arbitrarily oriented slender body in the three mutually 
orthogonal axis directions specified in figure 1. We shall turn shortly to the 
application of these solutions for trajectory calculations. First, however, in view of 
the induced hydrodynamic torque that exists due to translational motion near an 
interface, it is necessary to determine the fundamental solutions for rotation of a 
slender body near an interface. 
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4. Fundamental solutions for rotation of a slender body near a flat fluid 
interface 

We turn now to the case of a slender body rotating with an angular velocity B in 
the presence of a plane fluid-fluid interface. Since the problem is linear, the solution 
for rotation with an arbitrary angular velocity can be obtained by superposition of 
the three independent solutions in which the axis of rotation is parallel to one of the 
three orthogonal xi (i = 1,2,3) axes. As noted earlier, solution of these three 
fundamental problems will provide all of the components of the hydrodynamic 
resistance tensors that are not obtainable from the results of 93. 

First let us consider a rotating slender body when the axis of rotation is parallel 
to the x, axis (i.e. 51 = Q, el). In  this case, the no-slip boundary condition on the body 
surface is given by 

u(xB) = [0, - (x sin 8 + ro sin 9 cos 8 )  Q,, r,, cos 9Q1]. 

We have performed an asymptotic expansion of the integral equation (4) with this 
boundary condition, using a similar approach to the case of translational motion, and 
found the required line distributions of Stokeslets and potential dipoles, 

a2(x) = -&?,xs in8[~-$~(2S(~)-  1 +K(x;A,8,d))]+O(s3). (23) 

The leading term in the line distribution of Stokeslets has a linear dependence on the 
distance x from the body centre, as a consequence of the fact that the magnitude 
of the velocity near the body surface (i.e. lx-xBl/Z < 1) is also proportional to the 
distance x for this rotational motion. 

Evaluating (10) and ( l l ) ,  we obtain the total torque and force acting on a 
cylindrical slender body which rotates with angular velocity a, el : 

T, = -~n,u,Q,13sin28s x2K(x;A,8,d)dx 

y3 = -Tlcote, (24b) 

(25) 

When a particle is oriented perpendicular to the interface, the torque and induced 
force can be obtained simply by substituting 8 = 90°, c ( x ;  A, d )  for K(x; A,  8, d) and 
a(x; A, d) for B(x; A, 8, d) into (24a, b) and (25) (c(x; A, d) and K(x; A, 8, d) are given 
in the Appendix). Batchelor (1970) considered the rotation of a straight rigid slender 
body of an arbitrary cross-section in an in$nite quiescent fluid, and calculated a 
hydrodynamic torque which is identical to (25a) with 8 = 90° up to order of s. 

In figure 13 the hydrodynamic torque T, given by (24a) is illustrated as a function 
of the orientation angle 8 for d/l = 1 . 0 1 , ~  = 0.1887 and A = 0 , l  and 00. Also shown 
is the corresponding result for rotation in an unbounded infinite fluid. The dependence 
on the orientation angle 8 in the presence of an interface is obviously very similar 
to that obtained for an unbounded fluid. Indeed, the effect of the interface on the 
required torque becomes very weak when the oblique angle 8 of the slender body is 
in the range from 8 = -45' to 8 = 45O. In view of the simple relationship between 
T, and T3 (24b), an illustrative figure for T3 is not necessary. The fact that T3 is also 
non-zero (25b) shows that a non-isotropic particle rotating with an angular velocity 
at  an oblique angle 8 (+ 0 or 90°) relative to its principal axis will also experience 
a torque normal to the direction of rotation; a positive torque T, (in the absence of 

1 
F2 = -2n,u2 Q, sin 8 s2 xB(x; A,  8, d) dx+ O(s) .  i_, 
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FIQURE 13. Dimensionless torque TJp ,  a, 1% as a function of the orientation angle 8 for rotation 
ofaslender body;a=l2,e1,d/Z= 1.01,~=0.1887,S(z) =?jln(l-(s/Z)*):----- , unbounded- 
fluid case. The force F, induced by this rotation (owing to the presence of the interface) is given 
in figure 8. 

an applied torque -T3) will induce a simultaneous rotation in the 3-direction, 
provided # += 0' or 90O. The existence of a critical viscosity ratio separating cases of 
increasing or decreasing torque, evident in figure 13, is similar to the results of Lee 
et al. (1979) for rotation of a sphere with an angular velocity sd = 0, el near a flat 
interface. 

A particle rotating near a flat interface will also experience a hydrodynamic force 
F, due solely to the presence of the interface, given by (25). The dimensionless force 
- Fz/p2 Q, 12e2 required to sustain the specified rotational motion (sd = 0, el) without 
translation is, in fact, identical with the dimensionless torque - TJp,  U ,  12e2 required 
to sustain the translational motion ( U = U,  e,) without rotation, which was illustrated 
previously in figure 8. This equality is expected on general theoretical grounds for 
Stokes flow with linear boundary conditions. In the absence of a force - F,, rotation 
in the l-direction will induce translation in the 2-direction. The sign of the induced 
translational velocity depends only on the viscosity ratio A. 

Now let us consider a rotating slender body whose rotation axis is parallel to the 
x2 axis. With the fluid velocity on the body surface, 

u(xB)  = [(x sin 8 + r,, sin 7 cos 8) Q,, 0, - (x cos 8- ro sin 7 sin 8) Q,], 

the required line distribution of Stokeslets and potential dipoles is as follows: 

al(x) = ~sinBQ,xs[l -+s(2S(x) -  1 + G ( z ; h , 8 , d ) ) ] + O ( s 3 ) ,  (26a) 
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FIQURE 14. Dimensionless torque T,/,u, 0, Pe as a function of the orientation angle 0 for rotation 
of a slender body; 0 = &e,, e = 0.1887, S(z) = !jln (1 -(z/Z)'): ----- , unbounded-fluid case; 
_ - - - -  , d / l  = 1.01 ; -, d / l  = 2. The force components Fl and F, induced by this rotation are shown 
respectively in figures 5 and 12. 

The total torque and induced force on the particle can be readily evaluated from the 
foregoing distribution of Stokeslets : 

T, =-% " IR Z3e [ 1--s ( ln2--11+3f 6 413 zzL(s;A,8,d)ds)]+O(~3), (27) 

Fl = 2np2 SZ, sin 8e2 zH(x  ; A ,  8, d )  dz + O(e3) ,  

1 
F3 = - 27tp2 SZ, cos 8s' zJ (x  ; A, 8 ,  d )  dz + O(e3) .  (28 b)  s_, 

I 1  

For the perpendicular orientation, F3 = 0, 
1 

Fl = 2np21R,e2 za(z;A,d)dz+O(e3), 

and T2 can be obtained by substituting c ( x ;  A ,  d )  for L(z; A ,  8, d) into (27). 
The hydrodynamic torque T, corresponding to the specified rotational motion SZ, e2 

is plotted in figure 14 for a circular cylindrical slender body as a function of the oblique 
angle 8 for d / l  = 1.01 and 2,e = 0.1887 and three values of A = 0, l  and CX) .  Also shown 
is the corresponding result for rotation in an unbounded fluid. It is evident that the 
hydrodynamic torque T, in an unbounded fluid must be independent of the 
orientation angle 8 as shown (indeed, this torque is simply given by (27) with 
L(z;  A ,  8, d) = 0). However, the torque in the presence of an interface can be seen to 
deviate significantly from that in an unbounded fluid with the details depending on 
the viscosity ratio and on the orientation and position of the body (i.e. 8 and d). Given 

FLM 136 14 
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FIGURE 15. Dimensionless torque T3/,u2 Q3 1% as a function of the orientation angle 8 for rotation 
of a slender body; D = Q,e,,d/2 = 1.01,~ = 0.1887,S(x) =+In (l-(z/Z)*): ----, unbounded-fluid 
case. The force component F, induced by this rotation is shown in figure 9. 

d / l  ( =  2) and E (=  0.1887), for example, a slender body rotating near a plane solid 
wall (h+co) experiences a larger hydrodynamic torque than it would in an un- 
bounded fluid for a certain range of 8 (i.e. -21' < 8 < 21' or 75' < 8 < 105'), but 
a smaller torque for 21' < 8 < 75' or 105' < 8 < 159'. Further, the torque becomes 
increasingly sensitive to the orientation angle 8 as the viscosity ratio h is increased. 
For example, in the free-surface case (i.e. A+O) ,  the torque is still very nearly 
independent of 8 while, in the solid-wall case (i.e. h+co), the relative deviation is 
larger. 

As in the case of rotational motion in the l-direction, there exists an induced 
hydrodynamic force in the present case, which is due to the presence of the interface. 
The dimensionless induced forces FJp2 9, 12e2 and F3/p2 Q, 12e2 in this case are 
actually identical with the dimensionless induced torques T2/p2 U ,  12e2 and 
T2/p2 U, Z2e2 for translation in the 1- and 3-directions respectively (again as expected). 
The direction of the induced force Fl given by (28a) depends on the viscosity ratio 
and on the orientation and position of the body (i.e. 8 and d ) ,  cf. figure 5. However, 
the direction of action of the induced force F3 obtained from (28b) depends only on 
the orientation angle 8 (see figure 12). 

Finally we consider a slender body rotating near a plane interface with an angular 
velocity 52 = 9, e3. The line distribution of Stokeslets and potential dipoles necessary 
to satisfy the no-slip boundary condition is 

(29) 
The total torque and induced force exerted on a cylindrical slender body are then 

a2(x)  = ~ C O S  8O,zs[l -4~(2S(x)- 1 + K ( x ;  A ,  8, d ) ) ] + O ( e 3 ) .  

TI = @pz Q, Z3 sin 286 1 --E In 2- f i+A x2K(z ;  A, 8, d )  dx)] + 0 ( e 3 ) ,  (30a) [ ( 6 4% -1 

T3 = - c o ~ ~ T , ,  
r l  

F2 = ~ Z ~ ~ Q , C O S € ' E ~  J zB(x;A,8,d)dx+o(~3).  
-1 
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For the body oriented perpendicular to the interface, the total torque can be shown 
to be O(Ro/l, Ro/d) ,  and the induced force is obviously zero. This latter result is in 
agreement with the quiescent infinite-fluid case analysed by Batchelor (1970). 

The hydrodynamic torque T3 given by (30b) is plotted in figure 15 as a function 
of the orientation angle 8, including the corresponding result for rotational motion 
in an unbounded fluid. The effect of the interface is relatively weak, and the torque 
at  d / l  = 1.01 very nearly equals that in an unbounded fluid for all three values of 
the viscosity ratio A. The existence of a 'critical' A separating cases in which the 
torque is either increased or decreased is again similar to the results obtained by Lee 
et al. (1979) for rotation of a sphere whose rotation axis is normal to an interface. 
For rotation of a slender body, however, the critical viscosity ratio depends on the 
particle orientation 8 and on the relative distance d/E, and cannot be uniquely 
determined (as could be done for the sphere). 

As in the case of rotation in the l-direction, a non-spherical axisymmetric body 
rotating in an unbounded fluid will experience a torque normal to the direction of 
angular velocity in addition to a torque parallel to that direction unless the axis of 
rotation is oriented parallel or perpendicular to one of the principal axes of the 
particle. The torque T, given by (30a) in the presence of an interface has exactly the 
same value as the torque T3 obtained from (24b), which acts on a slender body with 
angular velocity D = G?, el. 

The dimensionless induced force F2/p2 G?, 12s2 obtained from (31) in this case is equal 
to the dimensionless induced torque T3/,u2 U212e2 of (19b) for translation in the 
2-direction. As may be seen from figure 9 (the general features of which were discussed 
in §3.2), the direction of the induced force F2 depends on the orientation angle 8 and 
changes sign at 8 = 0' or 90'. 

We now have a complete set of fundamental solutions for the translation and 
rotation of a slender body through a quiescent fluid near a flat interface. These 
fundamental solutions provide the necessary relationships for calculation of particle 
trajectories for an arbitrary applied force and/or torque. In general, application of 
a force parallel to the x1 axis produces translation both along the axis, and normal 
to the interface, as well as rotation, as we shall see shortly. However, in an earlier 
paper, Fulford & Blake (1983) attempted to calculate the instantaneous angular 
velocity for a slender body which they assumed to be translating along the x1 axis 
(only). It is a simple matter to repeat this calculation using (13), (15) and (27). In 
figure 16, the resulting dimensionless angular velocity Q21/~U1 is plotted as a 
function of d / l  for E = 0.1887, and three values of 8 = O', 45' and 90'. The 
corresponding angular velocities calculated by Fulford & Blake (1983) for 8 = 0' and 
90' are in error, in some cases by as much as 60 %, since they used the relationship 
T2 = -@p2 PEG?, instead of (27)t (compare figures 3 (a)  and 4 (a)  of Fulford & Blake 
and figure 16 in this paper). 

t In the final published revision of their paper, Fulford & Blake did not claim to use this 
expression for T,. Instead, they state that the zero-torque condition for the freely rotating particle 
'requires. . .modification of the force [i.e. Stokeslet] distributions. . . '. The terms they add to the 
Stokeslet distributions are just the results precisely equivalent to the expressions T, = -&, l3eQz 
for parallel orientation ; and T, = 0 for perpendicular orientation. The hydrodynamic relationship 
for rotation in the x, direction is, however, T, = -inp2 PeQ, plus higher-order terms in the €-power 
series which represent the orientation effects (cf. (27) in the present paper). Furthermore, a careful 
examination of equations (17) and (18) in Fulford & Blake shows that both of the two equations 
for angular velocities in each orientation (i.e. perpendicular and parallel) are still based on the 
expression T, = -fnp2 FeQ, quoted above. 

14-2 
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FIGURE 16. Dimensionless angular velocity a, Z/U, E as a function of the dimensionless distance 
d / l  between the body centre and the interface; U = U , e , , e  = 0.1887,S(x) = ~ l n ( l - ( x / l ) z ) :  

0 = 00; - 0 = 450; ____ ,  0 = goo. 

5. Particle trajectories in sedimentation 
In the previous sections, we have analysed separately the individual components 

of force and torque for a set of mutually perpendicular translational and rotational 
motions of an arbitrarily oriented slender body. The linearity of Stokes' equations 
now enables us to solve for arbitrary motions of the body in the presence of a plane 
interface by superposing the results for these individual translational and rotational 
motions. 

Equations of motion for a rigid body of arbitrary shape in creeping flow can be 
expressed in general terms, provided the interface remains flat, by defining the 
so-called translational resistance tensor KT, the rotational resistance tensor KR, and 
the coupling tensor Kc (cf. Happel & Brenner 1973). Two fundamental relations exist 
between the translational and angular velocities and the force and torque in terms 
of these tensors, 

F = KT* U+ K&*Q, 

T = Kc. U+ KR.0, 

(32) 

(33) 
where F and Tare the total hydrodynamic force and torque, and U and f2 are the 
translational and angular velocities respectively. The tensors KT, KR and K, can be 
expressed in the following component form relative to the Cartesian coordinates 
described in $2 : 

(34) 
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FIGURE 17. Projection of a slender body onto the interface. 

and the various components of these tensors have already been evaluated in $53 
and 4. 

Although complete, (32) and (33) are inconvenient for analysing arbitrary motions 
of the body because they are based on the coordinate system described in $2. In this 
coordinate system, we take the x1 axis to coincide with the projection of the body 
centreline onto the interface, and the x1 and x2 axes must therefore rotate around 
the x3 axis as the body rotates. For trajectory calculations, it is more convenient to 
use the fixed coordinate system illustrated in figure 17. We shall designate the fixed 
coordinates by the superscript 0. Suppose the angle between the x1 and x: axes 
becomes # as the body rotates. Then a simple relationship between the velocity and 
resistance tensor components in each coordinate system can be established by 
introducing an orthogonal rotation tensor Q. For vector quantities, such as the 
translational velocities, the relationship between vector components is U = Q *  UD, 
where Q has components of [ c;$ sin# 

Q =  -sin$ cos# . (37) 
0 1 
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Furthermore, the same relationship applies also to the forces, torques and angular 
velocities in the two coordinate systems. By substituting these relationships into (32) 
and (33), we have 

F'= K&*UO+Kot*QO (38) 

To = K$* UO+Kk.Qo (39) 

KO = Q-1.K.Q (40) 

c *  

where the KO and K are related by 

for each of the translation, rotation and coupling tensors. 
With the preceding relationships established for the resistance tensors, the 

velocity vectors and the force and torque vectors all based on a fixed coordinate 
system, we can readily apply (38) and (39) to general trajectory calculations. For 
example, let us consider the motion of a slender body near a plane fluid-fluid interface 
under the action of an external force F'* and torque To*. An instantaneous solution 
for U" and Q0 is easily obtained from (38) and (39) : 

(41) 

(42) 

It is convenient to represent the particle trajectories corresponding to (41) and (42) 
in terms of the position vector xp of the body centre and the orientation angles (i.e. 
Euler's polar angles) 8 and $ of the body axis relative to the plane of the interface 
(for the definitions of 8 and $ see figures 1 and 17). The relationships between UO 
and 5 1 O  and time rate of changes in xp, 8 and $ (simply kp, 6 and 4) are as follows: 

U" = -(KO T- KOtmKO-l-KO c)-l*(~*-KOt*KO-l* Po*) 

QO = -KO-1. R (To*+K;'uo). 
C R  

dx 
k p = - L  dt v o  , (43) 

These five simultaneous differential equations (43)-(45) in combination with 
(41) and (42) are solved below using a fourth-order Runge-Kutta method with 
appropriate initial conditions. We consider trajectories for the special cases of a 
torque-free slender body (TO = 0) under the action of non-dimensionalized forces 

= e: perpendicular to the interface 
respectively. The purpose of these calculations is primarily illustrative. However, 
these two elementary trajectory problems are relevant to sedimentation phenomena 
near an interface, as well as being qualitatively related to the processes of particle 
capture at the surface of a larger bubble or drop which may be viewed as locally planar 
in the limit where the particle is very much smaller than the collector. First, we begin 
with the particle motion due to an external force parallel to the interface. This 
problem for the limit h = 00 was previously considered, both theoretically and 
experimentally, by Russel et al. (1977). In figure 18, the trajectories for a slender body 
initially located at x: = ( O , O ,  2) with initial orientations B0 = Oo, 12O, 22O, 50° and 79O 
and $o = Oo are plotted in terms of the separation distance d / l  and the angle of 
inclination 0 relative to the interface for three values of A = 0, 1 and a. In this case 
(q50 = O O ) ,  the axis of the particle is initially in the plane defined by the force and the 

= Fo/IFoI = ey parallel to the interface and 
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FIQURE 18. Trajectories for a torque-free slender body under the action of a dimensionless force 
f” = e! in terms of 8 and d l l ;  rp0 = Oo, 8, = Oo, 12O, 22O, 50’ and 79O: A = 0;  ----, A = 1 ; 
- h = a . - - -  , unbounded fluid. Markers are the corresponding experimental data of Russel 
et al. (1977). 

normal to the interface, and it is only 6 and the position of the particle centre which 
change with time. Also shown is the corresponding experimental data for the solid- 
wall case (h+00) obtained by Russel et al. (1977). The present theoretical results are 
in good agreement with the experimental data of Russel et al., and show the 
interesting phenomena of ‘glancing ’ and ‘reversing ’ turn trajectories that were first 
identified for A = 00 by the same authors. For a slender body of initial orientation 
O0 = 12O, the force parallel to the interface not only produces translation of the body 
parallel to the interface but also translation toward the interface with a simultaneous 
rotation in the direction of decreasing 6 so that the leading edge turns away from 
the interface. Once the particle becomes parallel to the interface, it  begins to move 
away from the interface as it continues to rotate in the direction of decreasing 6. In 
this case, the particle does not intersect the wall for any A. This is an example of a 
‘glancing turn’, which can be studied in detail in figures 18 and 19. For an initial 
orientation 8, = 22”, a slender body near a free surface (A+O)  still experiences a 
glancing turn. However, in the cases A = 1 and 00 , the particle reaches the interface 
before the orientation becomes parallel (actually up to d/Z-lsinOI = 0.01, which is 
the separation distance between the tip of the body and the interface). As the initial 
orientation angle O0 is increased further, the direction of rotation changes, and the 
particle trajectories exhibit so-called ‘reversing ’ turns. In this case, the particle 
rotates in the direction of increasing 6 so that it eventually becomes perpendicular 
to the interface, pivoting about its leading end before moving away from the 
interface. For example, a slender body with initial orientation B0 = 79O and h = 00 
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FIQURE 19. Trajectories for a torque-free slender body under the action of a dimensionless force 
P = e! in terms of x / 1  and d l l ;  $o = O', Oo = O', 12', 22' and 50': -----, A = 0; ----, A = 1 ; 
-, A = a3 ; ---, unbounded fluid. 

initially approaches the wall while simultaneously rotating with 8 increasing until 
finally the particle is oriented perpendicular to the interface. After this point, the body 
moves away from the interface as it continues to rotate. It may be noted from figures 
5 and 18 that a slender body near a free surface ( A  -+ 0) never experiences a ' reversing ' 
turn, but instead always rotates in the direction of decreasing 8 regardless of the 
initial orientation 8, or the relative position of the body dll .  

In the case 4, + O", the projection of the particle axis onto the interface is no longer 
parallel to the external force ffo = e!, and the trajectories are different from those 
in figures 18 and 19, in which 4, = 0". To illustrate the effect of the initial $-orientation 
on the particle motion, we have calculated trajectories for a slender body with initial 
orientations 4, = 30°, 60" and 90". The results are shown in figure 20. 

For small $, and 8,, the qualitative features are similar to those for the case of 
4, = 0"; however, significantly different features are found for larger 4, and 8,. In 
figure 20, the trajectories of a slender body, which is initially located a t  x; = (0, 0,2) 
with 8, = O", 12", 22", 50" and 79" and 4, = 60°, are plotted in terms of the orientation 
angle 8 and the relative distance d l l  from the interface for three values of h = 0, 1 
and co. It can be seen from figure 20 that the trajectories are significantly different 
from the case of 4, = O", especially for large values of 8, and a large viscosity ratio, 
as the particle not only tumbles end-to-end but also twists relative to the plane defined 
by the force and the normal to the interface. A rather curious result can be seen for 
a slender body with 8, = 50' or 79' and 4, = 60". Such a particle will, at  first, 
approach a solid wall (A-+co) along the trajectory A B  ahown in figure 20, but then 
moves away from the interface along the reversing trajectory BAC. In this case, as 
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FIGURE 20. Trajectories for a torque-free slender body under the action of a dimensionless force 
P = ey in terms of 0 and d l l ;  $,, = 60°, O0 = 0'. 1 2 O ,  2 2 O ,  50Oand 7 9 O :  -----, h = 0; ----, A = 1 ; 
--, A = 03 ; ---, unbounded fluid. 

the particle translates along the xf direction, it initially moves toward the interface, 
and rotates in the direction of increasing 8 and increasing q5 owing to  the induced 
torque To of (13), (19) and (22). The increase in q5 corresponds to  a twisting motion 
away from the plane defined by the external force and the normal to the interface. 
Eventually this twisting motion causes the particle axis to become perpendicular to 
the force (i.e. q5 = 90° point B in figure 20) and further increase in q5 then causes the 
end of the particle furthest from the interface to become the 'leading' end insofar 
as the translational motion is concerned, and further translation is accompanied by 
motion away from the interface exactly along the reversing trajectory BAC in the 
0 21s. d / l  representation owing to  the symmetry of the system (see figures 2, 4, 5 and 

The other problem considered here is the motion of a torque-free slender body under 
the action of dimensionless force = e! normal to  the interface. I n  figure 21 the 
trajectories for a slender body, which is initially located a t  X: = (0,0,5) with 
orientations 8, = 5 O ,  30°, 45O, 60° and 80° and q50 = Oo, are represented in terms of 
the orientation angle 8 and separation distance d / l  for three values of A = 0, 1 and 
00. We also include the corresponding results for trajectories in an unbounded fluid. 
It can be seen from figure 12 that the trajectory (8 us. d l l )  for a slender body initially 
oriented parallel or perpendicular to the interface is a vertical straight line. 
Furthermore, for any initial orientation 8, the particle always rotates towards an 
orientation parallel to the interface. This is perhaps the most interesting and 
important result of these illustrative calculations. I n  figure 22 the separation distance 
d l l ,  which can be regarded as the 'sedimentation distance', is plotted as a function 

7-15). 
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FIQURE 21. Trajectories for a torque-free slender body under the action of a dimensionless force 
f" = e! in terms of 8 and d l l ;  I$, = Oo, 8, = 5 O ,  30°, 4 5 O ,  60' and 80': -----, A = 0; ----, h = 1 ; 
-, h = 03 ; ---, unbounded fluid. 
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FIGURE 22. Sedimentation distance d l l  as a function of dimensionless time t IF'l/p, P ;  I$o = Oo, 
8 0 -  - 50, 300 and 600: -----, __-__ , unbounded fluid. = 

of the 'sedimentation time' IF'\ tip2 l2 for three cases of particle orientation 8, = 5 O ,  
30° and 60°. For each orientation we include three values of A = 0, 1 and 00. Also 
shown in each case is the corresponding result for an unbounded fluid. It is evident 
that  the sedimentation time increases due to the presence of interface for any 
combination of A and initial orientation. Although the effects of the interface are 
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greatest when the particle is parallel to the interface, the difference from the 
unbounded-fluid case is always relatively small. 

This completes our illustrative trajectory calculations using the fundamental 
solutions that were developed in $53 and 4. It is worth commenting that the scope 
of the analysis can be readily extended to calculate particle trajectories in any general 
linear flow field which is consistent with the presence of an interface. 

This work was supported by a grant from the Fluid Mechanics Program of the 
National Science Foundation. 
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